首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light-scattering studies on supercoil unwinding
Authors:Ailsa M Campbell and  Douglas J Jolly
Institution:Institute of Biochemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
Abstract:It has been shown previously that supercoiled unk]X174 bacteriophage intracellular DNA (mol.wt. 3.2x10(6)) with superhelix density, sigma=-0.025 (-12 superhelical turns) at 25 degrees C is best represented as a Y shape. In this work two techniques have been used to unwind the supercoil and study the changes in tertiary structure which result from changes in the secondary structure. The molecular weights from all experiments were in the range 3.2x10(6)+/-0.12x10(6). In experiments involving temperature change little change in the Y shape was observed between sigma=-0.027 (-13 superhelical turns, 14.9 degrees C) and sigma=-0.021 (-10 superhelical turns, 53.4 degrees C) as evidenced by the root-mean-square radius and the particle-scattering factor P(theta). However, at sigma=-0.0176 (-8 superhelical turns, 74.5 degrees C) the root-mean-square radius fell to between 60 and 70nm from 90nm indicating a large structural change, as did alterations in the P(theta) function. In experiments with the intercalating dye proflavine from values of bound proflavine of 0-0.06mol of dye/mol equiv. of nucleotide which correspond to values of sigma from -0.025 to -0.0004 (-12 to 0 superhelical turns) a similar transition was found when the superhelix density was changed by the same amount, and the molecule was shown to go through a further structural change as the unwinding of the duplex proceeded. At sigma=-0.018 (-9 superhelical turns) the structure was compatible with a toroid, and at sigma=-0.0004 it was compatible with a circle but at no point in the sequence of structure transitions was the structure compatible with the conventional straight interwound model normally visualized as the shape of supercoiled DNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号