首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane solubilization by detergent: use of brominated phospholipids to evaluate the detergent-induced changes in Ca2+-ATPase/lipid interaction
Authors:B de Foresta  M le Maire  S Orlowski  P Champeil  S Lund  J V M?ller  F Michelangeli  A G Lee
Institution:Centre de Génétique Moléculaire, CNRS, Université Pierre et Marie Curie, Gif-sur-Yvette, France.
Abstract:The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号