首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydroxyl- and Bicarbonate-Associated Transport Processes in Chara corallina: Studies on the Light-Dark Regulation Mechanism
Authors:LUCAS  WILLIAM J; OGATA  KOREAKI
Abstract:Lucas, W. J. and Ogata, K. 1985. Hydroxyl– and bicarbonate–associatedtransport processes in Chara corallintr. Studies on the light–darkregulation mechanism.—J. exp. Bot. 36: 1947–1958.Experiments were undertaken on the fresh water alga Chara corallinato investigate the nature of the coupling between the chloroplastsand the light–dependent OH and -associated plasmalemma transport systems. Electrophysiologicalexperiments, in which DCMU was employed, revealed that thischemical could elicit a hyperpolarization of the membrane potentialthat was identical to that normally obtained by turning offthe light. This DCMU–induced hyperpolarization was obtainedunder control () and phosphate–decoupled conditions (). Measurements of the extracellular electric potentialswhich are associated with the acidic () and alkaline (OH) regions, indicated that, in the presenceof control ()or phosphate–decoupled conditions, normal profiles were established under air, oxygenor nitrogen environments. These results indicate that the generationof the control signal(s) is related to events associated withchloroplast electron transport, rather than to changes in theflow or levels of carbon intermediates within the reductivepentose phosphate or photorespiratory cycles. Although the levelof oxygen was found to have no effect on the light–inducedactivation of the OH regions, we found that in pure oxygen thedark–induced inactivation of the OH efflux systemwas delayed, and that partial transport function could be maintainedin the dark. The possible involvement of changes in either theratio of oxidized to reduced ferridoxin or NADP? to NADPH, aspart of this light–mediated control signal, is discussed. Key words: Chara corallina, Plasma membrance transport, OH and , regulation
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号