Preparation and kinetic properties of 5-ethylphenazine-poly(ethylene glycol)-NAD+ conjugate, a unique catalyst having an intramolecular reaction step |
| |
Authors: | T Yomo H Sawai I Urabe H Okada |
| |
Affiliation: | Department of Fermentation Technology, Faculty of Engineering, Osaka University, Japan. |
| |
Abstract: | 5-Ethylphenazine-poly(ethylene glycol)-NAD+ conjugate (EP+-PEG-NAD+) was prepared by linking 1-(3-carboxypropyloxy)-5-ethylphenazine (I) to poly(ethylene glycol)-bound NAD+ (PEG-NAD+) and its kinetic properties were studied. As a reference compound, poly(ethylene glycol)-bound 5-ethylphenazine derivative (III) was also prepared and the effects of poly(ethylene glycol) on the reaction rate of the 5-ethylphenazine moiety with NADH was investigated. The second-order rate constant, k1, of the reaction of III with NADH is 2.78 mM-1 s-1 and is about 1.7 times that of 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine (II) with NADH. A similar effect of the attached poly(ethylene glycol) was observed for the reaction of PEG-NADH with I or II. The second-order rate constants, k2 and k3, of the reactions of the reduced form of III with oxygen and with 3-(4',5'-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium ion, respectively, were k2 = 1.22 mM-1 s-1 and k3 = 32 mM-1 s-1; the k2 value is not changed but the k3 value is decreased by the attachment of the polymer. EP+-PEG-NAD+ works as a unique catalyst having an intramolecular reaction step within its turnover cycle in a coupled multi-step reaction system containing malate dehydrogenase, malate, EP+-PEG-NAD+, a tetrazolium salt and oxygen. The first-order rate constant, k4, of the intramolecular reaction was 1.1 s-1. The effects of the covalent linking of the 5-ethylphenazine and the NAD+ moieties were estimated by comparing the value of k4 with that of k1 for the reaction of III with NADH; the effective concentration of the NADH moiety for the 5-ethylphenazine moiety on the same EP+-PEG-NADH molecule (or vice versa) was calculated to be 0.40 mM from the ratio of k4/k1. The values of the rate constants in the coupled multi-step reaction system enable us to understand the dynamic features of the system and the characteristics of EP+-PEG-NAD+ as a catalyst are discussed. |
| |
Keywords: | |
|
|