Fast Cytoplasmic pH Regulation in Acid-Stressed Leaves |
| |
Authors: | Heber, Ulrich Wagner, Ute Kaiser, Werner Neimanis, Spidola Bailey, Karen Walker, David |
| |
Affiliation: | 1Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg D-97082 Würzburg, Germany 2Biddlestone Field Laboratory, Robert Hill Institute, University of Sheffield Sheffield S10 2TN, U.K. |
| |
Abstract: | Induction of photosynthesis in leaves was prolonged, and steadystate photosynthesis was inhibited by very high CO2 concentrationswhich cause cytoplasmic acidification. Prolonged exposure tohigh CO2 relieved initially observed inhibition of photosynthesisat least partially. The sensitivity of carbon assimilation tohigh CO2 was different in different plant species. Acidificationby CO2 (or subsequent alkalization) was detected by measuringrapid CO2-release from the tissue and by monitoring fluorescenceof pH-indicating dyes which had been fed to the leaves throughthe petiole. The results indicate that two different mechanismsoperate in leaves to achieve and maintain pH homeostasis. Rapidand efficient pH-adjustment is provided by proton/cation exchangeacross the tonoplast. Slower and less efficient regulation occursby formation or consumption of base. In the presence of highCO2 concentrations, protons are pumped from the cytosol intoalready acidic vacuoles. In turn, vacuolar cations replace exportedprotons in the cytosol permitting bicarbonate accumulation andincreasing the pH of the acidified cytosol. Similarly effectiveand fast proton/cation exchange relieves acid-stress in thechloroplast stroma and permits photosynthesis to proceed withhigh quantum efficiency or high light-saturated rates in thepresence of CO2 concentrations which would, in the absence offast cytoplasmic pH regulation, inhibit photosynthesis. By inference,proton/cation exchange must also occur across the mitochondrialboundary. After cytoplasmic pH adjustment in the presence ofhigh CO2, removal of CO2 results in transient cytoplasmic alkalizationand, subsequently, in the return of cytoplasmic pH values tolevels observed prior to acid-stress. In addition to fast pHregulation by rapid proton/cation exchange across biomembranes,slow base production (e.g. NH3-formation) also contributes torelieving acid stress. Base produced in the presence of highCO2 is rapidly consumed after removal of CO2. Implications of the findings in regard to forest damage by potentiallyacidic air pollutants such as SO2 are briefly discussed. (Received November 8, 1993; Accepted February 3, 1994) |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|