首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative Immunogenicity of Subtype A Human Immunodeficiency Virus Type 1 Envelope Exhibiting Differential Exposure of Conserved Neutralization Epitopes
Authors:Catherine A Blish  D Noah Sather  George Sellhorn  Leonidas Stamatatos  Yide Sun  Indresh Srivastava  Susan W Barnett  Brad Cleveland  Julie Overbaugh  Shiu-lok Hu
Abstract:Development of broadly cross-reactive neutralizing antibodies (NAbs) remains a major goal of HIV-1 vaccine development, but most candidate envelope immunogens have had limited ability to cross-neutralize heterologous strains. To evaluate the immunogenicity of subtype A variants of HIV-1, rabbits were immunized with pairs of closely related subtype A envelopes from the same individual. In each immunogen pair, one variant was readily neutralized by a variety of monoclonal antibodies and plasma antibodies, while the other was neutralization resistant, suggesting differences in the exposures of key epitopes. The breadth of the antibody response was evaluated against subtype A, B, C, and D variants of HIV-1. The specificity of the immunogen-derived neutralizing antibody response was also compared to that of the infected individuals from whom these variants were cloned. None of the immunogens produced broad neutralizing antibodies in immunized animals, and most of the neutralizing antibodies were directed to the variable loops, particularly the V3 loop. No detectable antibodies to either of the potentially exposed conserved epitopes, the membrane proximal external region, or the CD4 binding site were found with immunized rabbits. In contrast, relatively little of the neutralizing activity within the plasma samples of the infected individuals was directed to linear epitopes within the variable loops. These data indicate that immunogens designed to expose conserved regions did not enhance generation of broadly neutralizing antibodies in comparison with the immunogens that failed to expose those regions using this immunization approach.The ability to elicit broadly cross-reactive neutralizing antibodies (NAbs) is likely to be an important component of an effective vaccine to human immunodeficiency virus type 1 (HIV-1). Unfortunately, the HIV-1 envelope (Env)-based vaccines developed to date do not elicit such antibodies. Initial vaccines based on soluble, monomeric gp120 generated antibodies capable of only weakly neutralizing the homologous virus, with a very narrow breadth of cross-reactivity (13, 30, 53). Subsequent modifications to the Env immunogens, including variable loop deletions (15, 20, 31, 34, 35, 61, 64-66), alterations in the glycosylation pattern (4, 10, 11, 14, 30, 43, 55, 56), epitope repositioning (39, 46), the use of consensus Envs (22, 36, 37, 47), and the use of soluble trimeric gp140 molecules as immunogens (1-3, 5, 14, 16, 20, 21, 24, 25) have led to only modest enhancements in NAb breadth or potency. These modified Env immunogens have failed to redirect NAbs from the variable loops to more conserved regions of Env (reviewed in reference 33).Differences in Env structure between HIV-1 subtypes may further hinder efforts to elicit broadly cross-reactive antibodies capable of protecting against transmitted strains worldwide. Most immunogens tested to date have been derived from subtype B Envs. However, there are clear antigenic differences between subtype B strains and the subtype A and C strains that account for most infections worldwide (6, 8, 27, 28, 40, 42). For instance, most transmitted subtype A Envs are resistant to the monoclonal antibodies 2G12, b12, 2F5, and 4E10, either because of alterations in the epitopes for these monoclonal antibodies (MAbs) or because the epitopes are shielded in these Envs (6, 8). It is therefore possible that even NAbs specific for a conserved region of subtype B Envs, such as the CD4 binding site, would not be able to access and neutralize a similar epitope on a subtype A Env.In order to evaluate the immunogenicity of subtype A Envs, which account for ∼25% of global HIV-1 infections (12), we previously investigated the types of antibody responses elicited following gp160 priming and gp140 boosting with immunogens derived from four subtype A Envs in comparison to the subtype B Env SF162 (38). These experiments were also designed to explore whether deriving immunogens from HIV-1 Envs isolated from early in infection would better target NAbs to transmitted strains. Although all of the subtype A-based immunogens and the SF162 immunogen elicited anti-V3 NAbs capable of neutralizing the easy-to-neutralize SF162 pseudovirus, only one of the four immunogens generated homologous NAbs (38). Even immunogens with shorter variable loops or fewer potential N-linked glycosylation sites (PNGS) did not lead to enhanced breadth of neutralization against heterologous subtype A or B Envs (38). However, the four subtype A Envs used in these immunizations were generally neutralization resistant to both plasma samples from HIV-1-infected individuals and to monoclonal antibodies (6), raising the possibility that the poor breadth observed could be related to the shielding of conserved epitopes within these Envs.In order to determine whether using subtype A Env immunogens that do not shield conserved epitopes could improve neutralization breadth, here we performed immunizations with pairs of Env immunogens derived from two individuals acutely infected with subtype A HIV-1. The Envs in each pair were very similar in their amino acid sequences yet differed dramatically in their neutralization phenotype (6, 9) (Fig. (Fig.1A).1A). The pair from subject Q461 had a neutralization-resistant Env, Q461e2 (termed Q461e2R to indicate neutralization resistance), and a neutralization-sensitive Env, Q461d1 (termed Q461d1S to indicate neutralization sensitivity), which was sensitive to neutralization by plasma, 2F5, 4E10, b12, and soluble CD4 (sCD4). We previously demonstrated that the neutralization sensitivity of the Q461d1S Env is mediated entirely by two amino acid substitutions in gp41, one in the first heptad repeat and one in the membrane proximal external region (MPER) (9). These mutations led to enhanced exposure of both the CD4 binding site and the MPER (9). From subject Q168, the Env Q168b23S was sensitive to autologous and heterologous plasma and to the MPER antibodies 2F5 and 4E10 but resistant to b12 and sCD4, while Q168a2R was weakly neutralized by the MPER antibodies, less sensitive to neutralization by autologous plasma, and resistant to heterologous plasma (6). The Q168a2R and Q168b23S Envs contain identical sequences in the MPER region yet have >500-fold differences in neutralization sensitivity to 2F5 and 4E10, indicating that the exposure of the MPER region, rather than the sequence, likely accounts for the enhanced neutralization of the Q168b23S Env.Open in a separate windowFIG. 1.Analysis of Q461d1S gp140 used for immunizations. (A) SDS-PAGE analysis of final preparation of Q461d1S gp140 from the GNA capture and DEAE and CHAP columns. Lane 1 contains molecular weight standards, lane 2 the concentrated DEAE flowthrough, and lane 3 the final concentrated protein. The purified Q461d1S gp140 protein is indicated by an arrow. The sizes of the molecular weight markers (in thousands) are indicated on the left. (B) Binding of purified gp140 subtype A to CD4 as determined by a high-pressure liquid chromatography (HPLC)-based assay. The bottom line represents the protein obtained after the GNA column, and the top line represents purified protein after all three steps. The trimer and monomer peaks are marked. (C) Summary of neutralization characteristics of all four HIV-1 subtype A Env variants used in the immunizations, adapted from reference 6. The pseudovirus is shown in the far left column. IC50 values for plasma sample (left) and monoclonal antibodies (right) are displayed. The autologous plasma samples were taken 3.7 ypi for subject Q461 and 2.6 ypi for subject Q168. The Kenya pool was derived by pooling plasma from 30 HIV-1-infected individuals in Kenya and has been described previously (6).Thus, to directly test whether using Env immunogens that expose conserved epitopes could enhance neutralization breadth immunization, here we immunized with these pairs of related Envs, in which one variant exposes conserved regions, while the other does not. We also compared the specificity of the NAb responses following immunization with these Envs with the specificities of the NAbs that developed during natural infection in the individuals from whom these variants were cloned.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号