首页 | 本学科首页   官方微博 | 高级检索  
     


31P-NMR saturation transfer study of the in vivo kinetics of arginine kinase in Carcinus crab leg muscle
Authors:Richard W. Briggs  George K. Radda  Keith R. Thulborn
Affiliation:Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU U.K.
Abstract:The kinetics of the reaction catalyzed by arginine kinase have been determined at 9.5 and 23°C for in vivo leg muscle of Carcinus maenas (the common shore crab) using the noninvasive technique of 31P-NMR spectroscopy. Concentrations of mobile phosphorus metabolites were the same at both temperatures: 78.7 mM for arginine phosphate, 9.0 mM for adenosine triphosphate (ATP), and 2.6 mM for inorganic phosphate (Pi), as estimated from NMR resonance intensities and literature values for ATP concentration as assayed by traditional biochemical methods. Apparent unidirectional rate constants for formation of ATP from arginine phosphate and ADP were 0.09 s?1 at 9.5°C and 0.27 s?1 at 23°C. Pseudo-first-order rate constants for arginine phosphate generation from Arg and ATP were 0.38 and 1.10 s?1 at 9.5 and 23°C, respectively. In vivo Q10 for the arginine kinase reaction between 9.5 and 23°C was thus 2.2 for both directions. When the kinetic data are analyzed using the Arrhenius equation, activation energies of 126 kJ/mol for ATP formation and 105 kJ/mol for arginine phosphate formation are found. The measured chemical fluxes through arginine kinase in the forward reaction (arginine phosphate hydrolysis) were twice those in the reverse reaction, consistent with either compartmentation of substrates or participation of substrates in alternative metabolic pathways.
Keywords:Arginine kinase kinetics  Saturation transfer  (Crab leg muscle)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号