首页 | 本学科首页   官方微博 | 高级检索  
     


Melanopsin is highly resistant to light and chemical bleaching in vivo
Authors:Sexton Timothy J  Golczak Marcin  Palczewski Krzysztof  Van Gelder Russell N
Affiliation:Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA.
Abstract:Melanopsin is the photopigment of mammalian intrinsically photosensitive retinal ganglion cells, where it contributes to light entrainment of circadian rhythms, and to the pupillary light response. Previous work has shown that the melanopsin photocycle is independent of that used by rhodopsin (Tu, D. C., Owens, L. A., Anderson, L., Golczak, M., Doyle, S. E., McCall, M., Menaker, M., Palczewski, K., and Van Gelder, R. N. (2006) Inner retinal photoreception independent of the visual retinoid cycle. Proc. Natl. Acad. Sci. U.S.A. 103, 10426-10431). Here we determined the ability of apo-melanopsin, formed by ex vivo UV light bleaching, to use selected chromophores. We found that 9-cis-retinal, but not all-trans-retinal or 9-cis-retinol, is able to restore light-dependent ipRGC activity after bleaching. Melanopsin was highly resistant to both visible-spectrum photic bleaching and chemical bleaching with hydroxylamine under conditions that fully bleach rod and cone photoreceptor cells. These results suggest that the melanopsin photocycle can function independently of both rod and cone photocycles, and that apo-melanopsin has a strong preference for binding cis-retinal to generate functional pigment. The data support a model in which retinal is continuously covalently bound to melanopsin and may function through a reversible, bistable mechanism.
Keywords:7-Helix Receptor   Circadian Rhythms   Phototransduction   Physiology   Vision   Melanopsin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号