首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular systematics of Brassica and allied genera in subtribes Brassicinae, Raphaninae, Moricandiinae, and Cakilinae (Brassicaceae, tribe Brassiceae); the organization and evolution of ribosomal gene families
Authors:RANJANA NAGPAL  TANVIR H DAR  SOOM N RAINA
Institution:Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi−110007, India
Abstract:DNA restriction endonuclease fragment analysis was used to obtain new information on the genomic organization of ribosomal DNA (rDNA) of Brassica and allied genera. The total genomic DNA of 95 accessions of 52 species representing 16 genera was restricted with six enzymes, and the restriction fragments were probed with three ribosomal clones (pTA71, Ver 18‐6, and Ver 6‐5). Eleven repeat unit length classes were recognized. The repeat unit size classes of 8.9 kb and 9.5 kb were observed most commonly, being represented in 17 and 14 species, respectively. The restriction enzyme SacI produced three to six (generally three) bands with detectable hybridization to the probe pTA71. This probe–enzyme combination indicated a remarkable uniformity amongst Brassica and allied genera in the coding region of repeat units. By contrast, an extensive size variation in the restriction fragments could be localized in the intergenic spacer (IGS) region. Eleven IGS‐containing length variants were detected. Complex hybridization patterns, resulting from extensive repeat unit heterogeneity and taxon‐specific methylation of one or more cleavage sites, were obtained with the EcoRI + pTA71 combination. The relative homologies between the coding regions were evident from the presence of 1.5 kb in all the taxa, and 0.4‐, 1.3‐, and 1.7‐kb fragments in 33, 27, and 24 species, respectively. The SacI + pTA71 and EcoRI + pTA71 combinations were generally able to distinguish taxa both within and between genera. Three restriction endonuclease digests probed with three ribosomal clones yielded essentially identical fragmentation patterns across all the accessions within the cultivated species Brassica campestris, B. oleracea, and B. juncea. In B. napus, three and seven accessions exhibited restriction profiles similar to one and both diploid progenitor species, respectively. Overall, rDNA repeat unit length polymorphism showed good correlation with the cytodeme‐based classification of Brassica and allied genera. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 545–557.
Keywords:intergenic spacer (IGS)  phylogenetic relationships  rDNA repeat unit length  restriction fragment length polymorphism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号