首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Disruption of P450-mediated vitamin E hydroxylase activities alters vitamin E status in tocopherol supplemented mice and reveals extra-hepatic vitamin E metabolism
Authors:Sabrina A Bardowell  Xinxin Ding  Robert S Parker
Institution:*1.Division of Nutritional Sciences, Cornell University, Ithaca, NY;Wadsworth Center, New York State Department of Health, Albany, NY; and;§School of Public Health, State University of New York, New York, NY
Abstract:The widely conserved preferential accumulation of α-tocopherol (α-TOH) in tissues occurs, in part, from selective postabsorptive catabolism of non-α-TOH forms via the vitamin E-ω-oxidation pathway. We previously showed that global disruption of CYP4F14, the major but not the only mouse TOH-ω-hydroxylase, resulted in hyper-accumulation of γ-TOH in mice fed a soybean oil diet. In the current study, supplementation of Cyp4f14−/− mice with high levels of δ- and γ-TOH exacerbated tissue enrichment of these forms of vitamin E. However, at high dietary levels of TOH, mechanisms other than ω-hydroxylation dominate in resisting diet-induced accumulation of non-α-TOH. These include TOH metabolism via ω-1/ω-2 oxidation and fecal elimination of unmetabolized TOH. The ω-1 and ω-2 fecal metabolites of γ- and α-TOH were observed in human fecal material. Mice lacking all liver microsomal CYP activity due to disruption of cytochrome P450 reductase revealed the presence of extra-hepatic ω-, ω-1, and ω-2 TOH hydroxylase activities. TOH-ω-hydroxylase activity was exhibited by microsomes from mouse and human small intestine; murine activity was entirely due to CYP4F14. These findings shed new light on the role of TOH-ω-hydroxylase activity and other mechanisms in resisting diet-induced accumulation of tissue TOH and further characterize vitamin E metabolism in mice and humans.
Keywords:ω  -oxidation  CYP4F14  CYP4F2  cytochrome P450 reductase  knockout mouse  liver  intestine  fecal elimination  diet  metabolites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号