首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis.
Authors:M W Makinen  L C Kuo  J J Dymowski  S Jaffer
Abstract:The mechanism of action of bovine pancreatic carboxypeptidase. Aalpha (peptidyl-L-amino acid hydrolase; EC 3.4.12.2) has been investigated by application of cryoenzymologic methods. Kinetic studies of the hydrolysis of the specific ester substrate O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate have been carried out with both the native and the Co2+-substituted enzyme in the 25 to --45 degrees C temperature range. In the --25 to --45 degrees C temperature range with enzyme in excess, a biphasic reaction is observed for substrate hydrolysis characterized by rate constants for the fast (kf) and the slow (ks) processes. In Arrhenius plots, ks extrapolates to kcat at 25 degrees C for both enzymes in aqueous solution, indicating that the same catalytic rate-limiting step is observed. The slow process is analyzed for both metal enzymes, as previously reported (Makinen, M. W., Yamamura, K., and Kaiser, E. T. (1976) Proc Natl. Acad. Sci. U. S. A. 73, 3882-3886), to involve the deacylation of a mixed anhydride acyl-enzyme intermediate. Near --60 degrees C the acyl-enzyme intermediate of both metal enzymes can be stabilized for spectral characterization. The pH and temperature dependence of ks reveals a catalytic ionizing group with a metal ion-dependent shift in pKa and an enthalpy of ionization of 7.2 kcal/mol for the native enzyme and 6.2 kcal/mol for the Co2+ enzyme. These parameters identify the ionizing catalytic group as the metal-bound water molecule. Extrapolation of the pKa data to 25 degrees C indicates that this ionization coincides with that observed in the acidic limb of the pH profile of log(kcat/Km(app)) for substrate hydrolysis under steady state conditions. The results indicate that in the esterolytic reaction of carboxypeptidase. A deacylation of the mixed anhydride intermediate is catalyzed by a metal-bound hydroxide group.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号