Influence of pulsatility on the development of intracardiac jets: an in vitro laser Doppler study. |
| |
Authors: | B Diebold A Delouche E Abergel P Delouche P Dumée P Péronneau |
| |
Affiliation: | Unité INSERM 256, Hopital Broussais, Paris, France. |
| |
Abstract: | ![]() So far, it has been hypothesized that numerical data obtained in steady flow conditions apply to pulsatile flows. In order to study the modifications of the velocity fields due to pulsatility, jets were produced by 8 orifices (with a diameter "D" of 4.4 to 11.3 mm) included in a chamber of 50 mm. The velocity was measured using laser Doppler anemometry with a pulsatile flow ("pf") and compared to the values obtained in steady ("sf"): at maximum velocity, the longitudinal velocity profile is qualitatively similar to this observed in steady flow: it is made of a plateau followed by an hyperbolic velocity decay in the turbulent area. The length of the core ("Lpf") is strongly related to "D" (Lpf = 3.72 D + 5.49, r = .99) and the velocity decay depends on the ratio between the distance "x" from the orifice and "D" (V/Vo = 2.83D/x + 3.46, r = .85, where V is the velocity at "x" and Vo the initial velocity). During the acceleration and the deceleration, the laminar core is disturbed by turbulences. The comparison of "pf" data with "sf" data demonstrated similar diameters at the origin of the jets (Dpf = 0.96 Dsf + .12, r = .99), but significant (p less than .0001) differences both for "L" and "V/Vo": Lpf = .91Lsf + 6.58, r = .97, V/Vopf = .63 V/Vosf + .34, r = .76. Thus, pulsatility modifies velocity fields and the results obtained in steady flow conditions do not apply to pulsatile jets. |
| |
Keywords: | |
|
|