首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SIDECAR POLLEN suggests a plant-specific regulatory network underlying asymmetric microspore division in Arabidopsis
Authors:Sung Aeong Oh  David Twell  Soon Ki Park
Institution:1.Division of Plant Biosciences; Kyungpook National University; Daegu, South Korea;2.Department of Biology; University of Leicester; Leicester, UK
Abstract:Asymmetric cell division is a universal strategy to generate diverse cell types necessary for patterning and proliferation of all eukaryotes. The development of haploid male gametophytes (pollen grains) in flowering plants is a remarkable example in which division asymmetry governs the functional specialization and germline differentiation essential for double fertilization. The male gametophyte is patterned via two mitotic divisions resulting in three highly differentiated daughter cells at maturity, a vegetative cell and two sperm cells. The first asymmetric division segregates a unique male germ cell from an undetermined haploid microspore and is executed in an elaborate sequence of cellular events. However the molecular mechanisms governing the division asymmetry in microspores are poorly understood. Recently we studied the phenotype of sidecar pollen (scp) mutants in detail, and demonstrated a requirement of SCP for both the correct timing and orientation of microspore division. SCP is a microspore-specific member of the LOB/AS2 domain family (LBD27/ASL29) showing that a plant-specific regulator plays a key role in oriented division of polarized microspores. Identification of SCP will serve as a new platform to further explore the largely unknown molecular networks regulating division asymmetry in microspores that establishes the male germline in flowering plants.Key words: sidecar pollen, microspore division, division asymmetry, male gametophyte development, male germline, LBD/ASL family proteinUnlike animals, flowering plants do not set aside a distinct germline from an early stage of the life cycle. Instead the angiosperm germline or germ cells are only segregated in the male and female gametophytes by a limited number of post-meiotic mitoses.1 However, in common with their metazoan cousins, angiosperms utilize division asymmetry for cellular patterning and differentiation of their germlines. Through the unique patterning of a ‘cell-within-a-cell’ structure with three highly differentiated cells, the male gametophyte (pollen grains) serves its biological role to deliver two sessile male gametes to the female gametophyte. Two sequential but different modes of mitotic divisions pattern the male gametophyte (Fig. 1).2 The first division (of the microspore) is asymmetric giving rise to two completely different daughter cells, a larger vegetative cell that will form the pollen tube and a smaller germ cell that is engulfed within the vegetative cell cytoplasm. The second division (of the germ cell) usually appears symmetric and produces a pair of linked sperm cells. Microspores artificially induced to undergo symmetric division using microtubule inhibitors lack the germ cell and fail to form the typical three-celled structure showing that asymmetry in microspore division is critical for patterning of the male gametophyte.4Open in a separate windowFigure 1Male gametophyte development in Arabidopsis (upper part) and mutations that block germ cell formation (lower part). (Upper part) Male gametophyte development involves two rounds of mitotic division. Prior to the first division the centrally positioned microspore nucleus migrates towards the radial wall (the future germ cell pole marked with an asterisk). At this eccentric site the polarized microspores undergo oriented mitosis and cytokinesis giving rise to highly unequal daughter cells, a vegetative cell and a germ cell of which the later produces a pair of sperm cells by symmetric division. (Lower part) Mutants that fail to establish a distinct germ cell arising from specific defects are illustrated. Arrows in red indicate the developmental origin of the phenotypic defects in mutants. Note that two daughter nuclei in the mutants are in grey to show that their cell fates have not yet been thoroughly investigated. n, nucleus; Vn, vegetative nucleus; Gn, generative nucleus; Gc, generative (or germ) cell; Sc, sperm cell; WT, wild type; gem1, gemini pollen1; scp, sidecar pollen; tio, two-in-one; hik/tes, hinkel/tetraspore 12a/12b, kinesin-12a/kinesin-12b.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号