首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synergistic activation of plasma membrane H+– ATPase in Arabidopsis thaliana cells by turgor decrease and by fusicoccin
Authors:Giovanna Curti  Ferdinando Massardi  Piera Lado
Institution:Dipart, di Biologia, Univ. degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy.
Abstract:The regulation of the H+-ATPase of plasma membrane is a crucial point in the integration of transport processes at this membrane. In this work the regulation of H+-ATPase activity induced by changes in turgor pressure was investigated and compared with the stimulating effect of fusicoccin (FC). The exposure of cultured cells of Arabidopsis thaliana L. (ecotype Landsberg 310–14-2) to media containing mannitol (0. 15 or 0. 3 M ) or polyethylene glycol 6000 (PEG) (15. 6% or 22% w/v) resulted in a decrease in the turgor pressure of the cells and in a strong stimulation of H+ extrusion in the incubation medium. The osmotica-induced H+ extrusion was (1) inhibited by the inhibitor of plasma membrane H+-ATPase, erythrosin B (EB), (2) dependent on the external K+ concentration, (3) associated with a net K+ influx, and (4) lead to an increase of cellular malate content. These results show that the reduction of external osmotic potential stimulates the activity of plasma membrane H+-ATPase
The effect of mannitol was only partially inhibited by treatments with cycloheximide (CH) and cordycepin, which block protein and mRNA synthesis, respectively. All the effects of osmotica were qualitatively and quantitatively similar to those induced by 5 μ M FC. However, when FC and mannitol (or PEG) were fed together, their effects on H+ extrusion appeared synergistic, irrespective of whether FC was present at suboptimal or optimal concentrations. This behaviour suggests that the modes of action of FC and of the osmotica on H+-ATPase activity differ at least in some step(s)
Keywords:Arabidopsis thaliana                        fusicoccin            H+-ATPase  mannitol  osmotic regulation  PEG  plasma membrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号