首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure-function relationship in the binding of snake neurotoxins to the torpedo membrane receptor.
Authors:R Chicheportiche  J P Vincent  C Kopeyan  H Schweitz  M Lazdunski
Abstract:The Cys30-Cus34 bridge present in all long neutotoxins (71-74 amino acids, 5 disulfide bridges), but not in short toxins (60-63 amino acids, 4 disulfide bridges), is exposed at the surface since it can be reduced rapidly and selectively by sodium borohydride. Reduction and alkylation of the Cys30-Cys34 bridge of Naja haje neurotoxin III hardly alter the conformational properties of this model long toxin. Although alkylation by iodoacetic acid of th -SH groups liberated by reduction abolishes the toxicity, alkylation by iodoacetamide or ethylenimine does not affect the curarizing efficacy of the toxin. The Cys30-Cys34 bridge is not very important for the toxic activity of long neurotoxins. Reduction of the Cys30-Cys34 bridge followed by alkylation with radioactive iodoacetamide gave a labeled and active toxin which is a convenient derivative for binding experiments to the toxin receptor in membranes of the Torpedo electric organ. The binding capacity of these membrane is 1200 pmol of toxin/mg of membrane protein. The dissociation constant of the modified toxin-receptor complex at pH 7.4, 20 degrees is 10 minus 8m. Reduction with carbroxamidomethylation of the Cys30-Cys34 bridge decreases the affinity of the native Naja haje toxin only by a factor of 15. Carboxymethylation after reduction prevents binding to the membrane receptor. The binding properties of the derivative obtained by reduction and aminoethylation of Cys30-Cys34 are very similar to those of native neurotoxin III; the affinity is decreased only by a factor of 5. Binding properties to Toredo membrane of long neurotoxins (Naja haje neurotoxin III) and short neurotoxins (Naje haje toxin I and Naja mossambica toxin I) have been compared. Dissociation constants of receptor-long neurotoxin and receptor-short neurotoxin complexes are very similar (5.7 minus 8.2 times 10(-10) M at pH 7.4, 20degrees. However, the kinetics of complex formation and complex dissociation are quite different. Short neurotoxins associate 6-7 times faster with the toxin receptor and dissociate about 5-9 times faster that long neurotoxins. Acetylation and dansylation of Lys53 and Lys 27 decrease the affinity of long and short toxins for their receptor by a factor of about 200 at pH 7.4, 20 degrees, mainly because of the slower rate of association with the receptor.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号