首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relationship between gene duplicability and diversifiability in the topology of biochemical networks
Authors:Zhanyong Guo  Wen Jiang  Nuno Lages  Wade Borcherds  Degeng Wang
Institution:.Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3900 USA ;.Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3900 USA ;.Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, BSF218, Tampa, FL 33620 USA
Abstract:

Background

Selective gene duplicability, the extensive expansion of a small number of gene families, is universal. Quantitatively, the number of genes (P(K)) with K duplicates in a genome decreases precipitously as K increases, and often follows a power law (P(k)∝k). Functional diversification, either neo- or sub-functionalization, is a major evolution route for duplicate genes.

Results

Using three lines of genomic datasets, we studied the relationship between gene duplicability and diversifiability in the topology of biochemical networks. First, we explored scenario where two pathways in the biochemical networks antagonize each other. Synthetic knockout of respective genes for the two pathways rescues the phenotypic defects of each individual knockout. We identified duplicate gene pairs with sufficient divergences that represent this antagonism relationship in the yeast S. cerevisiae. Such pairs overwhelmingly belong to large gene families, thus tend to have high duplicability. Second, we used distances between proteins of duplicate genes in the protein interaction network as a metric of their diversification. The higher a gene’s duplicate count, the further the proteins of this gene and its duplicates drift away from one another in the networks, which is especially true for genetically antagonizing duplicate genes. Third, we computed a sequence-homology-based clustering coefficient to quantify sequence diversifiability among duplicate genes – the lower the coefficient, the more the sequences have diverged. Duplicate count (K) of a gene is negatively correlated to the clustering coefficient of its duplicates, suggesting that gene duplicability is related to the extent of sequence divergence within the duplicate gene family.

Conclusion

Thus, a positive correlation exists between gene diversifiability and duplicability in the context of biochemical networks – an improvement of our understanding of gene duplicability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号