Abstract: | ![]() A nondestructive acetylene reduction assay for nitrogenase activity of soybean (Glycine max L. Merr) field plots is presented. Plots consisted of 120 × 150 × 30 centimeter boxes containing 65 plants. The plants were grown in a medium grade sand under controlled nutrient, moisture, and root temperature conditions. Acetylene at a concentration of 10 milliliters per liter was circulated through manifolds in the chambers; equilibration required 5 minutes, and activity was linear with time. Optimum growth and assay environments resulted in activity of 70 micromoles ethylene per plant per hour. Plant development and yield were comparable to soil-grown companion plots.The well accepted hypothesis that developing seeds deprive the nodules of carbohydrate was not substantiated. The nondestructive acetylene reduction profile did not decline until 30 days after the onset of seed development (R-5). This result was consistent with reports from the literature which indicated that 60% of seasonal nitrogen was fixed after R-5. Further, a high correlation shown between integrated seasonal acetylene reduction and yield (r = 0.999) suggested a cooperative relationship between the roots and shoot. A reduction in source:sink ratio (60% defoliation) after R-5 had no effect on acetylene reduction. This showed that neither an increase in sink demand by the pods nor a carbon shortage during podfill decreased dinitrogen fixation. A conceptual model relating seed growth with carbon and nitrogen assimilation is proposed. |