首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ouabain-insensitive Na+-stimulated ATPase activity of basolateral plasma membranes from guinea-pig kidney cortex cells: II. Effect of Ca2+
Authors:Fulgencio Proverbio  Teresa Proverbio  Reinaldo Marin
Institution:Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 1827, Caracas 1010 A Venezuela
Abstract:The ouabain-insensitive, Mg2+-dependent, Na+-stimulated ATPase activity present in fresh basolateral plasma membranes from guinea-pig kidney cortex cells (prepared at pH 7.2) can be increased by the addition of micromolar concentrations of Ca2+ to the assay medium. The Ca2+ involved in this effect seems to be associated with the membranes in two different ways: as a labile component, which can be quickly and easily ‘deactivated’ by reducing the free Ca2+ concentration of the assay medium to values lower than 1 μM; and as a stable component, which can be ‘deactivated’ by preincubating the membranes for periods of 3–4 h with 2 mM EDTA or EGTA. Both components are easily activated by micromolar concentrations of Ca2+. The Ka of the system for Na+ is the same, 8 mM, whether only the stable component or both components, stable and labile, are working. In other words, the activating effect of Ca2+ on the Na+-stimulated ATPase is on the Vmax, and not on the Ka of the system for Na+. The activating effect of Ca2+ may be related to some conformational change produced by the interaction of this ion with the membranes, since it can also be obtained by resuspending the membranes at pH 7.8 or by ageing the preparations. Changes in the Ca2+ concentration may modulate the ouabain-insensitive, Na+-stimulated ATPase activity. This modulation could regulate the magnitude of the extrusion of Na+ accompanied by Cl? and water that these cells show, and to which the Na+-ATPase has been associated as being responsible for the energy supply of this mode of Na+ extrusion.
Keywords:Plasma membrane  Ouabain insensitivity  (Guinea pig  kidney cortex)  EGTA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号