首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye.
Authors:Yingcong Zheng  Birgit Hirschberg  Jeffrey Yuan  Alice P Wang  David C Hunt  Steven W Ludmerer  Dennis M Schmatz  Doris F Cully
Affiliation:Merck Research Laboratories, Merck and Co., Inc., Rahway, New Jersey 07065, USA.
Abstract:
Histamine has been shown to play a role in arthropod vision; it is the major neurotransmitter of arthropod photoreceptors. Histamine-gated chloride channels have been identified in insect optic lobes. We report the first isolation of cDNA clones encoding histamine-gated chloride channel subunits from the fruit fly Drosophila melanogaster. The encoded proteins, HisCl1 and HisCl2, share 60% amino acid identity with each other. The closest structural homologue is the human glycine alpha3 receptor, which shares 45 and 43% amino acid identity respectively. Northern hybridization analysis suggested that hisCl1 and hisCl2 mRNAs are predominantly expressed in the insect eye. Oocytes injected with in vitro transcribed RNA, encoding either HisCl1 or HisCl2, produced substantial chloride currents in response to histamine but not in response to GABA, glycine, and glutamate. The histamine sensitivity was similar to that observed in insect laminar neurons. Histamine-activated currents were not blocked by picrotoxinin, fipronil, strychnine, or the H2 antagonist cimetidine. Co-injection of both hisCl1 and hisCl2 RNAs resulted in expression of a histamine-gated chloride channel with increased sensitivity to histamine, demonstrating coassembly of the subunits. The insecticide ivermectin reversibly activated homomeric HisCl1 channels and, more potently, HisCl1 and HisCl2 heteromeric channels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号