首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development
Authors:Kandasamy Muthugapatti K  Burgos-Rivera Brunilís  McKinney Elizabeth C  Ruzicka Daniel R  Meagher Richard B
Institution:Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, Georgia 30602, USA.
Abstract:Two ancient and highly divergent actin-based cytoskeletal systems have evolved in angiosperms. Plant genomes encode complex actin and actin binding protein (ABP) gene families, most of which are phylogenetically grouped into gene classes with distinct vegetative or constitutive and reproductive expression patterns. In Arabidopsis thaliana, ectopic expression of high levels of a reproductive class actin, ACT1, in vegetative tissues causes severe dwarfing of plants with aberrant organization of most plant organs and cell types due to a severely altered actin cytoskeletal architecture. Overexpression of the vegetative class actin ACT2 to similar levels, however, produces insignificant phenotypic changes. We proposed that the misexpression of the pollen-specific ACT1 in vegetative cell types affects the dynamics of actin due to its inappropriate interaction with endogenous vegetative ABPs. To examine the functionally distinct interactions among the major classes of actins and ABPs, we ectopically coexpressed reproductive profilin (PRF4) or actin-depolymerizing factor (ADF) isovariants (e.g., ADF7) with ACT1. Our results demonstrated that the coexpression of these reproductive, but not vegetative, ABP isovariants suppressed the ectopic ACT1 expression phenotypes and restored wild-type stature and normal actin cytoskeletal architecture to the double transgenic plants. Thus, the actins and ABPs appear to have evolved class-specific, protein-protein interactions that are essential to the normal regulation of plant growth and development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号