首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The kinetics of glucose transport in human red blood cells
Authors:A G Lowe  A R Walmsley
Abstract:A quenched-flow apparatus and a newly developed automated syringe system have been used to measure initial rates of D-14C]glucose transport into human red blood cells at temperatures ranging from 0 degrees to 53 degrees C. The Haldane relationship is found to be obeyed satisfactorily at both 0 and 20 degrees C, but Arrhenius plots of maximum D-14C]glucose transport rates are non-linear under conditions of both equilibrium exchange and zero trans influx. Fitting of the data by non-linear regression to the conventional model for glucose transport gives values at 0 degrees C of 0.726 +/- 0.0498 s-1 and 12.1 +/- 0.98 s-1 for the rate constants governing outward and inward movements of the unloaded carrier molecule and 90.3 +/- 3.47 s-1 and 1113 +/- 494 s-1 for outward and inward movements of the carrier-glucose complex. Activation energies for these four rate constants are respectively 173 +/- 3.10, 127 +/- 4.78, 88.0 +/- 6.17 and 31.7 +/- 5.11 kJ X mol-1. These parameters indicate that at low temperatures the marked asymmetry of the transport mechanism arises mainly from the high proportion of inward-facing carriers and carrier-glucose complexes, and that there is a relatively small difference between the affinities of the carrier for glucose in the inward and outward-facing conformations. At high (physiological) temperatures the carrier is fairly evenly distributed between outward- and inward-facing conformations and the affinity for glucose is about 2.5-times greater outside than inside.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号