首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Influence of Applied Nitrogen on Export and Partitioning of Current Assimilate by Field-grown Potato Plants
Authors:OPARKA  K J; DAVIES  H V; PRIOR  D A M
Institution:Department of Physiology and Crop Production, Scottish Crop Research Institute Invergowrie, Dundee DD2 5DA, UK
Abstract:Field-grown potatoes were subjected to N deficiency (no appliedN) or received high levels of N (240 kg N ha–1) at planting.The effects of these treatments were monitored at five stagesduring growth in terms of the allocation of photosynthate withinthe leaf, and the export and partitioning of carbon to differentsinks. N deficiency significantly raised the starch concentrationin all organs of the plants, particularly in leaves and stems,and as a consequence the total amount of starch in the canopyof the low N plants remained greater than that of the high Nplants until approx. 100 days after planting (DAP). The totalamounts of carbohydrates, protein and amino acids were calculatedfor each treatment and these values were used to derive a balancesheet for major reserves. Net losses of reserves occurred fromthe canopy in both treatments in the period 97–133 DAP,although these were shown to represent < 3 per cent of thetotal gain in tuber dry weight for the season. Partitioning of 14C assimilates was examined in whole plantsand also in single leaves. Reduced partitioning to the tubers,seen in high N plants throughout their growth, was shown tobe due to decreased percentage export by the leaf and accumulationof exported 14C by the stems. Partitioning to the tubers inlow N plants increased prior to senescence when 87 per centof the fixed 14C was exported within 24 h, 80 per cent of thisto the tubers. The equivalent values for the high N plants were77 and 60 per cent respectively. Increased percentage exportcoincided with decreased allocation to starch in the leaf, anda link between these processes is suggested. N also significantlyaltered the allocation of 14C within the leaf and may have influencedthe degradation of starch in the dark to a greater degree thanits synthesis in the light. The enzymes sucrose phosphate synthase (SPS), and starch synthasewere measured concurrently with partitioning. High N plantsshowed higher rates of activities of each of the enzymes althoughboth enzymes showed a similar pattern of development over theseason, irrespective of N treatment. The data are discussed in the light of conflicting reports concerningthe influence of N on translocation and partitioning. 14C assimilates, carbohydrates, nitrogen, potato (Solanum tuberosum L.), protein
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号