首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neuromuscular and balance responses to flywheel inertial versus weight training in older persons
Authors:Onambélé Gladys L  Maganaris Constantinos N  Mian Omar S  Tam Enrico  Rejc Enrico  McEwan Islay M  Narici Marco V
Institution:Department of Exercise and Sport Science, Manchester Metropolitan University, Hassall Road, Alsager, ST7 2HL, UK. g.pearson@mmu.ac.uk
Abstract:AimLoss of muscle strength and balance are main characteristics of physical frailty in old age. Postural sway is associated with muscle contractile capacity and to the ability of rapidly correcting ankle joint changes. Thus, resistance training would be expected to improve not only strength but also postural balance.MethodsIn this study, age-matched older individuals (69.9±1.3 years) were randomly assigned to flywheel (n=12), or weight-lifting (n=12) groups, training the knee extensors thrice weekly for 12 weeks. The hypotheses were that owing to a larger eccentric loading of the knee extensors, flywheel training would result in (a) greater gains in quadriceps strength; (b) greater improvements in balance performance compared with weight-lifting training. Isokinetic dynamometry, B-mode ultrasonography, electromyography, percutaneous muscle stimulation and magnetic resonance imaging were employed to acquire the parameters of interest.ResultsFollowing training, knee extensors peak isokinetic power increased by 28% (P<0.01) in the flywheel group with no change in the weight-lifting group. Adaptations of the gastrocnemius muscle also occurred in both groups. The gastrocnemius characteristic with the highest response to training was tendon stiffness, with increases of 54% and 136% in the weight-lifting and flywheel groups, respectively (P<0.01). The larger increase in tendon stiffness in the flywheel group was associated with an improvement in postural balance (P<0.01).ConclusionQuadriceps flywheel loading not only produces a greater increase in power than weight training but its physiological benefits also transfer/overspill to the plantarflexor muscle–tendon unit resulting in a significantly improved balance. These findings support our initial hypotheses.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号