首页 | 本学科首页   官方微博 | 高级检索  
     


Induction of tubules in rat metanephrogenic mesenchyme in the absence of an inductive tissue
Authors:Alan O. Perantoni  Lee F. Dove  Cheryl L. Williams
Affiliation:Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick, MD 21702.
Abstract:Differentiation of metanephrogenic mesenchyme to renal tubular epithelium requires induction by the ureteric bud in vivo or any of several embryonic tissues in vitro. In an effort to eliminate the tissue requirement in embryonic induction, extracellular matrices and soluble factors were analyzed individually or in combination for their ability to stimulate tubulogenesis in uninduced metanephrogenic mesenchyme from 13-gestation-day rat embryos. These evaluations have established that pituitary extract and epidermal growth factor (EGF) in concert with a matrix can promote morphogenesis of mesenchymal rudiments in culture. While type I collagen, laminin, or fibronectin matrices all promoted tubulogenesis in the presence of pituitary extract and EGF, type IV collagen proved the most effective. Under these conditions, tubules were induced in 23/24 mesenchymal rudiments by 9 days in culture. Mesenchyme was not induced prior to explanation since it formed no tubules when cultured in a medium that allowed tubulogenesis in intact embryonic kidneys. Preliminary characterization of the undefined factor in pituitary extract was consistent with a protein of molecular weight greater than 100,000 but less than 300,000. When uninduced metanephrogenic mesenchyme from mouse was used instead of rat tissue, a similar pattern of morphogenesis was not observed, suggesting that the described medium is inappropriate for promoting differentiation in mouse or, less likely, that different mechanisms mediate differentiation in rat and mouse. These studies show that embryonic induction can occur in explanted rat renal mesenchyme in an appropriate environment and does not require the presence of an inductive tissue.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号