首页 | 本学科首页   官方微博 | 高级检索  
     


The enzymatic one-electron reduction of porphyrins to their anion free radicals
Authors:K M Morehouse  R P Mason
Affiliation:Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.
Abstract:
The anaerobic enzymatic one-electron reduction of uroporphyrin I (in the absence of light) by the ferredoxin/ferredoxin:NADP+ oxidoreductase system was investigated using NADPH as the source of reducing equivalents. The porphyrin anion free radical metabolite formed by one-electron reduction of the parent molecule was detected with ESR spectroscopy. The ESR spectrum exhibited a singlet (g = 2.0021) with a 5.4-G peak-to-peak linewidth. The reduction process was also investigated under aerobic conditions. The reduction of molecular oxygen to superoxide anion radical by the porphyrin anion radical was demonstrated by using the ESR technique of spin trapping. The ESR spectra of the spin-trapped oxygen-derived radicals were superoxide dismutase-sensitive and catalase-insensitive, supporting the assignment of the trapped radical to the superoxide anion radical. These aerobic experiments demonstrate electron transfer from the porphyrin anion radical to molecular oxygen. The anaerobic reduction of Photofrin II by hepatic microsomes and the ferredoxin/ferredoxin:NADP+ oxidoreductase system to a porphyrin anion radical was also investigated. Free radical formation by ferredoxin: NADP+ oxidoreductase is totally dependent upon ferredoxin. The ESR spectrum of this porphyrin free radical also exhibited a singlet (g = 2.0026) with a 15-G peak-to-peak linewidth.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号