首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic definition of protein folding transition state ensembles and reaction coordinates
Authors:Snow Christopher D  Rhee Young Min  Pande Vijay S
Affiliation:Biophysics Program and Chemistry Department, Stanford University, Stanford, California 94305, USA.
Abstract:
Using distributed molecular dynamics simulations we located four distinct folding transitions for a 39-residue betabetaalphabeta protein fold. To characterize the nature of each room temperature transition, we calculated the probability of transmission for 500 points along each free energy barrier. We introduced a method for determining transition states by employing the transmission probability, Ptrans, and determined which conformations were transition state ensemble members (Ptrans approximately 0.5). The transmission probability may be used to characterize the barrier in several ways. For example, we ran simulations at 82 degrees C, determined the change in Ptrans with temperature for all 2,000 conformations, and quantified Hammond behavior directly using Ptrans correlation. Additionally, we propose that diffusion along Ptrans may provide the configurational diffusion rate at the top of the barrier. Specifically, given a transition state conformation x0 with estimated Ptrans=0.5, we selected a large set of subsequent conformations from independent trajectories, each exactly a small time deltat after x0 (250 ps). Calculating Ptrans for the new trial conformations, we generated the P(Ptrans|deltat=250 ps) distribution that reflected diffusion. This approach provides a novel perspective on the diffusive nature of a protein folding transition and provides a framework for a quantitative study of activated relaxation kinetics.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号