首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of temperature on lactose hydrolysis by immobilized beta-galactosidase in plug-flow reactor
Authors:Yang S T  Okos M R
Institution:Department of Chemical Engineering, The Ohio State University, Columbus, Ohio 43210.
Abstract:The hydrolysis of lactose using immobilized beta-galactosidase (from Aspergillus niger) on phenol-formaldehyde resin was studied at temperatures between 8 and 60 degrees C and initial lactose concentrations ranging from 2.5 to 20.0%. A model involving enzyme-galactose complex similar to Michaelis-Menten kinetics with competitive product (galactose) inhibition is suitable to describe the lactose hydrolysis reaction. A small degree of lack of fit between the model and the data was found to be due to the formation of oligosaccharides. Thermal deactivation of lactase follows first-order reaction mechanism. The effect of temperature on the reaction and the deactivation rate constants follows the Arrhenius relationship. The Oligosaccharide formation was not significantly affected by the temperature when the initial lactose concentration was 5%. A design equation for the plug-flow immobilized lactase reactor was developed from the reaction and the deactivation kinetics and was used to find the optimal operating temperature. The optimal temperature was found to be dependent on the operating time but not on the lactose concentration or the conversion. The optimal operating temperature is 60 degrees C when operating time is short but is close to 35 degrees C for a long operating time. A preliminary economic analysis indicates that the optimal operating temperature is 43, 38.5, and 33 degrees C when the operating time is 300 days, 1000 days, and infinity, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号