首页 | 本学科首页   官方微博 | 高级检索  
     


Glycoprotein synthesis in lysolecithin-treated cells using sugar nucleotides as glycosyl donors
Authors:M. Rudick  V. Rudick  S. Magie  E. Jacobson
Affiliation:(1) Biology Department, Texas Woman's University, 76204 Denton, Texas;(2) Anatomy Department, North Texas State University/The Texas College of Osteopathic Medicine, 76107 Forth Worth, Texas
Abstract:Summary The 3T3 cells were treated with 50 μg/ml lysolecithin (LL) followed by the addition of exogenously supplied radiolabelled sugar nucleotides to serve as direct glycosyl donors. These were found to be 1.5 to 3.0 times more active than untreated cells in their glycosyl transferase activities depending on the particular sugar nucleotide used. Mannosyl transferase activity was not inhibited by 2-deoxyglucose or mannose-1-phosphate, indicating that the sugar nucleotide remained intact throughouth the assay period. Preincubation of the cells with tunicamycin caused an 85% decrease in mannosyl transfer, which suggested that the normal pathway of glycosylation via lipid intermediates was still operable in the treated cells. Fractionation of control and LL-treated cells after incubation with UDP[3H]galactose revealed that only microsomal and cytosolic proteins from the treated cells were radioactive. Thus, intracellular labelling of permeabilized cells was allowed. About 80% of the radiolabeled product was glycoprotein in nature, based upon its solubilization with pronase. This work was supported by institutional funds granted by Texas Woman's University.
Keywords:glycosylation  permeabilization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号