首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cloning of the bone Gla protein gene from the teleost fish Sparus aurata. Evidence for overall conservation in gene organization and bone-specific expression from fish to man
Authors:Pinto J P  Ohresser M C  Cancela M L
Institution:

a University of Algarve, Center for Marine Sciences, Campus de Gambelas, 8000-810 Faro, Portugal

b Laboratoire de Neurobiologie, UPR 9024. 31- Chemin Joseph Aiguier 13402 Marseille Cedex 20, France

Abstract:Bone Gla protein (BGP, Osteocalcin) is a bone-specific vitamin K-dependent protein which has been intensively studied in mammals. Although BGP is the most abundant non-collagenous protein of bone, its mode of action at the molecular level remains unclear. From an evolutionary point of view, the appearance of BGP seems to parallel the appearance of hydroxyapatite-containing bone structures since it has never been found in elasmobranchs, whose skeleton is composed of calcified cartilage. Accordingly, recent work indicates that, in mammalian bone, BGP is required for adequate maturation of the hydroxyapatite crystal. Taken together, these data suggest that teleost fishes, presumably the first vertebrates to develop a BGP-containing skeleton, may be a useful model to further investigate BGP function. In addition, fish offer several advantages over mammalian models, due to a large progeny, external embryonic development and transparency of larvae. In the present work, the BGP cDNA and gene were cloned from a teleost fish, Sparus aurata, and its tissue distribution, pattern of developmental expression and evolutionary pathways analyzed. The molecular organization of the Sparus BGP (spBGP) gene is similar to mammalian BGP genes, and its expression throughout development follows the onset of calcification. The spBGP gene encodes a pre-propeptide of 97 amino acid residues, expressed only in bone and showing extensive homology to its mammalian homologs. Phylogenetic analysis of the available BGP sequences supports the hypothesis that all BGPs have a single origin and share a common ancestor with a related vitamin K-dependent protein (Matrix Gla protein).
Keywords:BGP  Osteocalcin  Development  Tissue distribution  Evolution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号