首页 | 本学科首页   官方微博 | 高级检索  
     


Mutagenic primer design for mismatch PCR-RFLP SNP genotyping using a genetic algorithm
Authors:Yang Cheng-Hong  Cheng Yu-Huei  Yang Cheng-Huei  Chuang Li-Yeh
Affiliation:Department of Network Systems, Toko University, Chiayi, Taiwan. chyang@cc.kuas.edu.tw
Abstract:Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is useful in small-scale basic research studies of complex genetic diseases that are associated with single nucleotide polymorphism (SNP). Designing a feasible primer pair is an important work before performing PCR-RFLP for SNP genotyping. However, in many cases, restriction enzymes to discriminate the target SNP resulting in the primer design is not applicable. A mutagenic primer is introduced to solve this problem. GA-based Mismatch PCR-RFLP Primers Design (GAMPD) provides a method that uses a genetic algorithm to search for optimal mutagenic primers and available restriction enzymes from REBASE. In order to improve the efficiency of the proposed method, a mutagenic matrix is employed to judge whether a hypothetical mutagenic primer can discriminate the target SNP by digestion with available restriction enzymes. The available restriction enzymes for the target SNP are mined by the updated core of SNP-RFLPing. GAMPD has been used to simulate the SNPs in the human SLC6A4 gene under different parameter settings and compared with SNP Cutter for mismatch PCR-RFLP primer design. The in silico simulation of the proposed GAMPD program showed that it designs mismatch PCR-RFLP primers. The GAMPD program is implemented in JAVA and is freely available at http://bio.kuas.edu.tw/gampd/.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号