首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method
Abstract:
ABSTRACT

Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug’s potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs’ sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.
Keywords:Chemical stability  mass spectrometry  in silico modeling  protein structure  molecular modeling  structure property relationship  QSPR  algorithm  computer aided drug design  elastic network model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号