Abstract: | The human cervix-derived epithelial cell line (ME180) used in this study displays a characteristics epithelial morphology, including numerous desmosomes, tonofilaments, and epidermal filaments. When T-cell lines infected with human immunodeficiency virus (HIV) are added to epithelial cultures, they rapidly adhere to the epithelial monolayer. Within a few minutes, the T cells shed numerous virions into narrow spaces formed between the epithelial cell and the adherent T cells. Virions subsequently enter the ME180 cells via large vesicles. A few days after infection, cytopathic effects and syncytium formation were observed. Infected clones of ME180 cells have remained infected for 8 months. p24 enzyme-linked immunosorbent assay and infectivity assays show that one subclone of the cell line produces virus titers equivalent to those of high-secreting HIV-infected T-cell lines. Electron microscopy reveals numerous virions budding from both the basal and apical surfaces of the epithelium. These observations suggest that cervical epithelium has the potential to serve as a site of HIV infection. |