A proposed mechanism for the catalatic action of catalase |
| |
Authors: | A L Dounce |
| |
Affiliation: | Department of Biochemistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642 U.S.A. |
| |
Abstract: | A detailed mechanism for catalatic action has been proposed which includes the formation of Chance's catalase compound I in the first step and hydride ion transfer in the second step. The first (oxidative) step involves direct reaction of hematin iron with an ionized H2O2 molecule, followed by an oxidation of the iron to Fe IV. The second step is assumed to depend upon the reductive action of a second H2O2 molecule on Chance's compound I through a catalyzed hybride ion transfer, resulting in the regeneration of uncomplexed catalase. Differences between the catalatic and peroxidative actions of catalase are discussed briefly in respect to the proposed mechanism for catalatic action. The rationale of the proposed mechanism is based to a considerable extent upon the type of ligand binding by the hematin iron of catalase, and this type of ligand bonding is contrasted with ligand binding in methemoglobin, which does not show catalatic activity. Finally, the dispositions of electrons in the outer electronic orbitals of the hematin iron of catalase and methemoglobin are discussed, as a means of justifying formulae presented for catalase and methemoglobin and their derivatives. One of the features of the proposed catalatic mechanism is the assumption, based on electron spin number, that the sixth coordination position around the hematin iron of uncomplexed catalase is unoccupied. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|