首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intracanopy variation in nitrogen cycling through leaves is influenced by irradiance and proximity to developing fruit in mature walnut trees
Authors:Steven A Weinbaum  Tom T Muraoka  Richard E Plant
Institution:(1) Department of Pomology, University of California, 95616 Davis, CA, USA;(2) Department of Agronomy and Range Science, University of California, 95616 Davis, CA, USA
Abstract:Intracanopy variation in net leaf nitrogen (N) resorption and N cycling through leaves in mature walnut (Juglans regia L. cv Hartley) trees were monitored in 3 different years. Differential irradiance among the spurs sampled was inferred from differences among leaves in dry weight per unit area (LW/LA) which varied from 4.0 mg · cm–2 to 7.0 mg · cm–2 in shaded (S) and exposed (E) canopy positions, respectively. Our results, using 15N-depleted (NH4)2SO4 validated the concept that N influx and efflux through fully expanded leaves occurred concurrently during the period of embryo growth. Additionally, it also suggested that N influx into leaves was substantially greater in exposed as compared with shaded canopy positions. Because of its well documented phloem immobility, leaf Ca accumulation was used to better estimate the relative influx of N into exposed and shaded leaves. N cycling varied locally within the tree canopy, i. e. Ca (and presumably N) influx was 100% greater in exposed than shaded tree canopy positions, but influx was not influenced significantly by the proximity of developing fruit. In contrast, both the amount and percentage N efflux was significantly greater during embryo growth in fruit-bearing than defruited spurs. Net leaf N resorption averaged 2–4 times greater (25–30%) in fruit-bearing spurs than the 5–10% decrease in the leaf N content in defruited spurs. Since about 90% of leaf N content reportedly occurs as protein, fruit N demand apparently influenced protein turnover and catalysis in associated spur leaves. The amount of leaf N resorption was greater in exposed than shaded positions in the tree canopy in 2 of the 3 years of data collection. Our data show that like leaf N content, N influx, N efflux and net leaf N resorption vary throughout mature walnut tree canopies under the combined local influences of fruiting and irradiance.
Keywords:Branch autonomy  Light-canopy relationships  N cycling  N isotopes  Juglans regia
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号