首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal
Authors:Kim Hanyoup  Kane Michael D  Kim Sol  Dominguez Wilfredo  Applegate Bruce M  Savikhin Sergei
Institution:Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
Abstract:A DNA hybridization based optical detection platform for the detection of foodborne pathogens has been developed with virtually zero probability of the false negative signal. This portable, low-cost and real-time assaying detection platform utilizes the color changing molecular beacon as a probe for the optical detection of the target sequence. The computer-controlled detection platform exploits the target hybridization induced change of fluorescence color due to the F?rster (fluorescence) resonance energy transfer (FRET) between a pair of spectrally shifted fluorophores conjugated to the opposite ends of a beacon (oligonucleotide probe). Unlike the traditional fluorophore-quencher beacon design, the presence of two fluorescence molecules allows to actively visualize both hybridized and unhybridized states of the beacon. This eliminates false negative signal detection characteristic for the fluorophore-quencher beacon where bleaching of the fluorophore or washout of a beacon is indistinguishable from the absence of the target DNA sequence. In perspective, the two-color design allows also to quantify the concentration of the target DNA in a sample down to < =1 ng/microl. The new design is suitable for simultaneous reliable detection of hundreds of DNA target sequences in one test run using a series of beacons immobilized on a single substrate in a spatial format.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号