首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Origin and segregation of cranial placodes in Xenopus laevis
Authors:Pieper Mareike  Eagleson Gerald W  Wosniok Werner  Schlosser Gerhard
Institution:aBrain Research Institute, University of Bremen, FB2, PO Box 330440, 28334 Bremen, Germany;bDepartment of Biology, Loras College, Dubuque, IA 52004-0178, USA;cInstitute of Statistics, University of Bremen, FB2, PO Box 330440, 28334 Bremen, Germany;dZoology, School of Natural Sciences, National University of Galway, University Road, Galway, Ireland
Abstract:Cranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm. In agreement with proposed roles of Six1 and Pax genes in the specification of a panplacodal primordium and different placodal areas, respectively, we show that Six1 is expressed uniformly throughout most of the pre-placodal ectoderm, while Pax6, Pax3, Pax8 and Pax2 each are confined to specific subregions encompassing the precursors of different subsets of placodes. However, the precursors of the vagal epibranchial and posterior lateral line placodes, which arise from the posteriormost pre-placodal ectoderm, upregulate Six1 and Pax8/Pax2 only at tailbud stages. Whereas our fate map suggests that regions of origin for different placodes overlap extensively with each other and with other ectodermal fates at neural plate stages, analysis of co-labeled placodes reveals that the actual degree of overlap is much smaller. Time lapse imaging of the pre-placodal ectoderm at single cell resolution demonstrates that no directed, large-scale cell rearrangements occur, when the pre-placodal region segregates into distinct placodes at subsequent stages. Our results indicate that individuation of placodes from the pre-placodal ectoderm does not involve large-scale cell sorting in Xenopus.
Keywords:Cranial placodes  Fate map  Six1  Pax  Sensory organ  Cell movements
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号