首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cadmium uptake kinetics and plants factors of shoot Cd concentration
Authors:Christos Stritsis  Norbert Claassen
Institution:1. Department of Crop Sciences, Plant Nutrition, Georg August University of G?ttingen, Carl-Sprengel-Weg 1, 37075, G?ttingen, Germany
Abstract:

Background and aims

Accumulation of Cd in the shoots of plants grown on Cd contaminated soils shows considerable variation. A previous preliminary experiment established that one major reason for this variation was the rate of Cd influx into the roots (mol Cd cm?2 root s?1). However, this experiment did not distinguish between solubilization of soil Cd on the one hand and difference in Cd uptake kinetics on the other. The main objectives of the present study were thus to characterize Cd uptake kinetics of plants continuously exposed to Cd concentrations similar to those encountered in soils. Furthermore we determined the factors responsible for differences in shoot Cd concentration such as net Cd influx, root area-shoot dry weight ratio, shoot growth rate and proportion of Cd translocated to the shoot.

Materials and methods

Maize, sunflower, flax and spinach were grown in nutrient solution with five constant Cd concentrations varying from 0 to 1.0 μmol?L?1. Root and shoot parameters as well as Cd uptake were determined at two harvest dates and from these data Cd net influx and shoot growth rates were calculated.

Results and conclusions

Cadmium uptake kinetics, i.e. the net Cd influx vs. Cd solution concentration followed a straight line. Its slope is the root absorbing power, α, $ \left( {\alpha ={{{\mathrm{Cd}\mathrm{net}\mathrm{influx}}} \left/ {{\mathrm{Cd}\mathrm{solution}\mathrm{concentration}}} \right.}} \right) $ . The α values of spinach and flax were about double that of maize and sunflower (5?×?10?6?cm?s?1 vs. 2.5?×?10?6?cm?s?1). Spinach and flax had a 3–5 times higher shoot Cd concentration than maize and sunflower. The difference in shoot Cd concentration was partly due to the higher Cd influx but also to a higher translocation of Cd from root to shoot and also to a slower shoot growth rate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号