首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microtiter micromass cultures of limb-bud mesenchymal cells
Authors:Douglas F Paulsen  Michael Solursh
Institution:(1) Department of Biology, University of Iowa, 52242 Iowa City, Iowa;(2) Department of Anatomy, Morehouse School of Medicine, 30310 Atlanta, Georgia
Abstract:Summary A method is described for growing high-density micromass cultures of chick and mouse limb mesenchyme cells in 96-well microtiter plates (μTμM cultures). Rapid quantitative estimates of chondrogenic expression were obtained by automated spectrophotometric analysis of Alcian-blue-stained cartilage matrix extracts performed in the wells in which the cells had been grown. Quantitative estimates of myogenic expression were obtained similarly using anti-sarcomere myosin monoclonal antibody and modified ELISA techniques. This μTμM-ELISA method may be adapted for use with other antigens for which specific antibodies are available. These methods were used to compare cartilage and muscle differentiation in 1 to 4 d μTμM cultures grown in serum-containing (SCM) and defined (DM) media. The DM contains minimal additives (insulin, hydrocortisone, and in some cases, ascorbate or transferrin) and supports both chondrogenesis and myogenesis. The colorimetric analyses agree well with the morphologic appraisal of chondrogenesis and myogenesis. Similar numbers of cartilage nodules formed in all cultures, but in DM the nodules failed to enlarge; explaining the reduced matrix synthesis in DM as compared with SCM, and suggesting that nodule enlargement is a discrete, serum-dependent step. Studies of selected additives to DM show that transferrin enhances myogenesis, ascorbic acid enhances chondrogenesis, and retinoic acid inhibits chondrogenesis. Together, the μTμM system, in situ colorimetric assays of chondrogenesis and myogenesis, and DM will allow rapid prescreening of teratogens and screening of various bioactive compounds (e.g., hormones, growth factors, vitamins, adhesion factors) for effects on limb mesenchymal cell differentiation. This work was supported by grants RR08006-13 (DFP) and HD05505 and HD18577 (MS) from the National Institutes of Health, Bethesda, MD. MF-20 hybridoma supernatant was obtained from the Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa 52242 (maintained by NIH grant NO1-HD62915).
Keywords:limb-bud mesenchyme  microtiter plates  chondrogenesis  myogenesis  serum-free medium  ELISA
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号