首页 | 本学科首页   官方微博 | 高级检索  
     


Control of galactosylated glycoforms distribution in cell culture system
Authors:Neil A. McCracken  Ronald Kowle  Anli Ouyang
Affiliation:Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
Abstract:Cell culture process conditions including media components and bioreactor operation conditions have a profound impact on recombinant protein quality attributes. Considerable changes in the distribution of galactosylated glycoforms (G0F, G1F, and G2F) were observed across multiple CHO derived recombinant proteins in development at Eli Lilly and Company when switching to a new chemically defined (CD) media platform condition. In the new CD platform, significantly lower G0F percentages and higher G1F and G2F were observed. These changes were of interest as glycosylation heterogeneity can impact the effectiveness of a protein. A systematic investigation was done to understand the root cause of the change and control strategy for galactosylated glycoforms distribution. It was found that changes in asparagine concentration could result in a corresponding change in G0F, G1F, and G2F distribution. A follow‐up study examined a wider range of asparagine concentration and it was found that G0F, G1F, and G2F percentage could be titrated by adjusting asparagine concentration. The observed changes in heterogeneity from changing asparagine concentration are due to resulting changes in ammonium metabolism. Further study ascertained that different integrated ammonium level during the cell culture process could control G0F, G1F, and G2F percentage distribution. A mechanism hypothesis is proposed that integrated ammonium level impacts intracellular pH, which further regulates β‐1, 4 galactosyltransferase activity. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:547–553, 2014
Keywords:cell culture  galactosylated glycosylation  asparagine  integral ammonium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号