Abstract: | The objective of this study was to determine whether fully grown oocytes, obtained after isolation from preantral follicles and growth in vitro, secrete paracrine factors affecting granulosa cell development and function. If so, the relative ease in producing oocytes in this way could facilitate the identification and characterization of the factors. As a test of this idea, the ability of in vitro grown oocytes to produce a paracrine factor that is known to enable the isolated cumulus oophorus to undergo expansion in response to follicle stimulating hormone (FSH) was determined. Initial experiments compared culture systems, which differed in the orientation of the oocyte-granulosa cell complexes from preantral follicles to an extracellular matrix, for their ability to support oocyte growth and the acquisition of competence to resume meiosis. The systems for culture on the surface of the matrix produced larger oocytes and the highest percentage of oocytes having competence to resume meiosis. Oocytes grown using this system secreted active cumulus expansion enabling factor, albeit at levels about half that of oocytes grown in vivo. A preliminary characterization of the cumulus expansion enabling factor secreted by the oocytes grown in vitro showed that activity was lost upon treatment with either heat (65°C for 15 min) or proteinase K. Activity did not pass through a membrane having a nominal molecular weight limit (NMWL) of 100 kd but did pass through a membrane having a NMWL of 300 kd. It is concluded that cumulus expansion enabling factor is secreted by oocytes grown in vitro. This factor is probably a protein or depends upon a protein for its activity. The ease in obtaining relatively large numbers of GVB-competent oocytes using techniques for growth in vitro combined with the demonstration that these produce cumulus expansion enabling factor indicates that these protocols can be used to produce oocytes for the collection and characterization of oocyte secretory products some of which are paracrine regulators of granulosa cells. © 1993 Wiley-Liss, Inc. |