首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of root environment on proton efflux in wheat roots
Authors:Y Bashan  Hanna Levanony
Institution:(1) Department of Agronomy, The Ohio State University, 43210 Columbus, OH, USA;(2) Department of Plant Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
Abstract:Proton net efflux of wheat (Triticum aestivum L.) roots growing in sand culture or hydroponics was determined by measuring the pH values of the solution surrounding the roots by pH microelectrodes, by base titration and by color changes of a pH indicator in solid nutrient media. The proton net efflux was dependent on light, aeration, and source of nitrogen (NH 4 + , NO 3 ? ). Ammonium ions caused the highest proton efflux, whereas nitrate ions decreased the proton efflux. Iron deficiency had no significant effect on proton efflux. Replacement of ammonium by nitrate inhibited proton efflux, whereas the reverse enhanced proton extrusion. A lag period between changes in plant environment and proton efflux was observed. The proton net efflux occurred at the basal portion of the roots but not in the root tips or at the elongation zone. Under optimal conditions, proton efflux capacity reached a maximum value of 5.7 μmole H+ g?1 fresh weight h?1 with an average (between different measurements) of 3.4 μmole H+ g?1 fresh wth?1 whereas the pH value decreased to 3.2–3.7 and reached a minimal value of 2.9. Inhibition of ATPase activity by orthovanadate inhibited proton efflux. The results indicate that proton efflux in wheat roots is ammonium ion and light dependent and probably governed by ATPase activity.
Keywords:antimony microelectrodes  associative bacteria  Azospirillum  nitrate and ammonium uptake  pH indicator  rhizosphere pH  proton pump            Triticum aestivum L  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号