首页 | 本学科首页   官方微博 | 高级检索  
     


Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina
Authors:R. C. Hardie  M. Weckström
Affiliation:(1) Department of Zoology, Cambridge University, Downing St., CB2 3EJ Cambridge, UK;(2) Department of Physiology, University of Oulu, Oulu, Finland
Abstract:Summary We have used single electrode voltage clamp in the intact animal and whole-cell recording from dissociated cell bodies to investigate the properties of potassium conductances in large monopolar cells (LMCs) of the first optic ganglion of the blowfly Calliphora vicina. Two classes of voltage gated potassium conductances were found: a delayed rectifier current (Kd) with slow inactivation (tauinac = 1–3 sec), and an A current (Ka) showing both faster inactivation (tauinac = 21 ms) and also more rapid activation. The reversal potential of both currents is ca. -90 mV with 2 mM [Ko] and 140 mM [Ki], and follows the Nernst slope with increasing [Ko]. The voltage operating range of Ka is unusually negative, with the mid point of the steady-state inactivation curve (V50) at- 101 mV. V50 for Kd is - 84 mV. Although no inward currents were detected, for technical reasons their presence cannot be excluded.In inside-out patches from LMC soma membranes the single channels underlying the currents both have a conductance of ca. 20 pS in symmetrical 140 mM K solutions and channel densities may be as high as 10/mgrm2. Less frequently, inside-out patches contained a large conductance (110 pS) calcium-activated potassium channel which existed almost exclusively in a rapidly flickering mode. Open probability increased with depolarization and Ca concentrations greater than 40 nM.In whole-cell recordings, dissociated LMC cell bodies fall into two classes with respect to their voltage sensitive currents: 37 % of cells only showed Kd; the remainder (63%) were dominated by Ka with a variable (0–30%) contribution from Kd. In the intact animal, intracellular recordings from LMCs, combined with dye-marking, indicate that cells expressing only Kd are type L3 cells, whilst L1 and L2 express predominantly Ka. Since L1 and L2 have resting potentials of ca. - 40 mV and maximum hyperpolarizations reaching -90 mV only transiently, inactivation of Ka is unlikely to be removed under most physiological conditions. In contrast, L3 cells have a more negative resting potential (–60 mV) and Kd should play a significant role in signal-shaping, in particular contributing to the falling phase of a prominent spike-like transient in response to dimming.Abbreviations Ka A current - Kd delayed rectifier - LMC large monopolar cell - L1-L3 classes thereof - TTX tetrodotoxin
Keywords:Potassium channels  Visual system  Fly  Non-spiking interneurones
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号