首页 | 本学科首页   官方微博 | 高级检索  
     

中国西北半干旱区净初级生产力驱动因子空间计算分析
引用本文:姬盼盼,高敏华,付晓红,王鹏飞,平渊,杨晓东. 中国西北半干旱区净初级生产力驱动因子空间计算分析[J]. 生态学报, 2019, 39(24): 9023-9032
作者姓名:姬盼盼  高敏华  付晓红  王鹏飞  平渊  杨晓东
作者单位:新疆大学资源与环境科学学院, 乌鲁木齐 830046;新疆大学绿洲生态教育部重点实验室, 乌鲁木齐 830046,新疆大学资源与环境科学学院, 乌鲁木齐 830046;新疆大学绿洲生态教育部重点实验室, 乌鲁木齐 830046,新疆大学资源与环境科学学院, 乌鲁木齐 830046;新疆大学绿洲生态教育部重点实验室, 乌鲁木齐 830046,新疆大学数学与系统科学学院, 乌鲁木齐 830046,新疆大学数学与系统科学学院, 乌鲁木齐 830046,新疆大学资源与环境科学学院, 乌鲁木齐 830046;新疆大学绿洲生态教育部重点实验室, 乌鲁木齐 830046;自治区智慧城市与环境建模重点实验室, 乌鲁木齐 830046
基金项目:国家自然科学基金项目(31500343);新疆自治区青年科技创新人才培养工程项目(qn2015bs006)
摘    要:净初级生产力(Net Primary Productivity,NPP)驱动因子分析对区域生态系统生产力监控与预测及生态承载力评估有重要意义。NPP驱动力系统研究近年成果已有很多,但前人研究中未能将因子空间属性在原数据和分析中得到体现。实际上,这不利于获得更科学的分析结果,甚至阻碍了数据本身空间信息的表达。在前人研究分析基础上,以新疆伊犁河谷为试验研究区,使用一种全新的数据预处理方法(C.V计算,C.V=SD/Mean),通过该方法使数据固有的空间属性或空间关系信息得以表达。将该数据集与原始数据集统计分析结果对比分析,得出结论:(1)半干旱区环境下NDVI、积温和海拔与NPP相关性相对较强。经自变量因子重要性排序分析,发现以上因子对因变量(NPP)有较高重要性(P0.01);(2)C.V数据集较原数据集在模型建立中拥有更高的拟合度,r值平均高出0.1左右,结果更优(P0.01),在环境因子建模分析中具有较好的应用前景;(3)原始数据仅能表达因子在空间中的数值分布,经C.V计算处理后,能直观的表达因子的空间变异性和数组单元的空间紊乱程度。(4)在半干旱区海拔因子对NPP的作用力相对较强,Duncan分析发现,各因子在海拔尺度下存在显著的分异特征(P0.01),说明了海拔因子对NPP的作用力。综上,研究尝试使用C.V计算数据预处理,令原始数据集附带空间属性,使得研究分析结果不单纯依赖于数值关系,结果表达的关系更加全面。研究结果对生态环境因子分析及NPP驱动力分析研究都有重要的试验价值与科学意义。

关 键 词:NPP  生态环境  气候变化  因子分析  空间计算  空间属性  半干旱区
收稿时间:2018-09-25
修稿时间:2019-07-29

Spatial calculation and analysis of Net Primary Productivity drivers in a semi-arid region of Northwest China
JI Panpan,GAO Minghu,FU Xiaohong,WANG Pengfei,PING Yuan and YANG Xiaodong. Spatial calculation and analysis of Net Primary Productivity drivers in a semi-arid region of Northwest China[J]. Acta Ecologica Sinica, 2019, 39(24): 9023-9032
Authors:JI Panpan  GAO Minghu  FU Xiaohong  WANG Pengfei  PING Yuan  YANG Xiaodong
Affiliation:Institute of Resource and Environment Science, Xinjiang University, Urumqi 830046, China;Key Laboratory of Oasis Ecology, Urumqi 830046, China,Institute of Resource and Environment Science, Xinjiang University, Urumqi 830046, China;Key Laboratory of Oasis Ecology, Urumqi 830046, China,Institute of Resource and Environment Science, Xinjiang University, Urumqi 830046, China;Key Laboratory of Oasis Ecology, Urumqi 830046, China,Institute of mathematics and systems science, Xinjiang University, Urumqi 830046, China,Institute of mathematics and systems science, Xinjiang University, Urumqi 830046, China and Institute of Resource and Environment Science, Xinjiang University, Urumqi 830046, China;Key Laboratory of Oasis Ecology, Urumqi 830046, China;Key Laboratory of intelligent urban and environmental modeling, Urumqi 830046, China
Abstract:Analysis of Net Primary Productivity (NPP) driving factors can provide a scientific basis for the ecological environment monitoring and prediction, and assessment of ecological carrying capacity. The NPP drivers'' research has become a hot topic in recent years, but previous studies failed to reflect the spatial attributes of factor in the original data and analysis. Actually, it was unfavorable with achieving more scientific consequence, because it put a brake on expression of the spatial information of the data itself. Therefore, we selected the Xinjiang Yili Valley as our study area and analyzed the environmental drive factors of semi-arid region of NPP by attempting to use a new spatial pre-treated method (C.V computation, C.V=SD/Mean) for data, which can help to express the spatial information of the ecological data itself. By a comparative analysis between normal data sets results and C.V data set results, we obtained some conclusions:(1) in semi-arid region, NDVI, accumulated temperature, and altitude were the most drive factors of NPP (P<0.01). It is mainly reflected in the positive promoting effect of the accumulated temperature on vegetation growth and the control of elevation change to the local precipitation condition. We also found that these factors manifested superiority on the importance rankings. (2) The C.V data set had higher fitting degree (P<0.01) in the model establishment, and had a certain application prospect. The fitting degree of the ordinary data sets is about 0.10 lower than that of C.V data sets. (3) After the original image was processed by C.V pre-treated method, it could directly express the spatial fluctuation of the factor, and the C.V computing process highlighted the fluctuation of the data between small and nearby domains. (4) After Duncan analysis, we found that each factor had significant differentiation characteristics at elevation level (P<0.01). Furthermore, the results confirmed the effect of altitude factor on NPP. From all above, C.V computing process allows the original data set to have spatial attributes. The statistical analysis results are not dependent on the numerical relationship, the relationship of our results can express more comprehensively. This analysis process and results have important experimental value and the scientific significance for the analysis of ecological environmental factors and the driving force analysis of NPP.
Keywords:NPP  ecological environment  climate change  deriving factors  spatial analysis  spatial attributes  semi-arid area
本文献已被 CNKI 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号