首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational analysis and membrane-interactions of the beta-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P
Authors:Fimland Gunnar  Pirneskoski Jussi  Kaewsrichan Jasadee  Jutila Arimatti  Kristiansen Per Eugen  Kinnunen Paavo K J  Nissen-Meyer Jon
Institution:Department of Molecular Biosciences, University of Oslo, Post box 1041, Blindern, 0316 Oslo, Norway. gunnar.fimland@imbv.uio.no
Abstract:To gain insight into how the N-terminal three-stranded beta-sheet-like domain in pediocin-like antimicrobial peptides positions itself on membranes, residues in the well-conserved (Y)YGNGV-motif in the domain were substituted and the effect of the substitutions on antimicrobial activity and binding of peptides to liposomes was determined. Peptide-liposome interactions were detected by measuring tryptophan-fluorescence upon exposing liposomes to peptides in which a tryptophan residue had been introduced in the N-terminal domain. The results revealed that the N-terminal domain associates readily with anionic liposomes, but not with neutral liposomes. The electrostatic interactions between peptides and liposomes facilitated the penetration of some of the peptide residues into the liposomes. Measuring the antimicrobial activity of the mutated peptides revealed that the Tyr2Leu and Tyr3Leu mutations resulted in about a 10-fold reduction in activity, whereas the Tyr2Trp, Tyr2Phe, Tyr3Trp and Tyr3Phe mutations were tolerated fairly well, especially the mutations in position 3. The Val7Ile mutation did not have a marked detrimental effect on the activity. The Gly6Ala mutation was highly detrimental, consistent with Gly6 being in one of the turns in the beta-sheet-like N-terminal domain, whereas the Gly4Ala mutation was tolerated fairly well. All mutations involving Asn5, including the conservative mutations Asn5Gln and Asn5Asp, were very deleterious. Thus, both the polar amide group on the side chain of Asn5 and its exact position in space were crucial for the peptides to be fully active. Taken together, the results are consistent with Val7 positioning itself in the hydrophobic core of target membranes, thus forcing most of the other residues in the N-terminal domain into the membrane interface region: Tyr3 and Asn5 in the lower half with their side chains pointing downward and approaching the hydrophobic core, Tyr2, Gly4 and His8 and 12 in the upper half, Lys1 near the middle of the interface region, and the side chain of Lys11 pointing out toward the membrane surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号