首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle
Authors:McCarthy John P  Wood David S  Bolding Mark S  Roy Jane L P  Hunter Gary R
Institution:1Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama 2Department of Athletics, California State Polytechnic University, San Luis Obispo, California 3Department of Vision Sciences 4Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama.
Abstract:ABSTRACT: McCarthy, JP, Wood, DS, Bolding, MS, Roy, JLP, and Hunter, GR. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle. J Strength Cond Res 26(9): 2345-2355, 2012-The purpose of this study was to determine where stretch-shortening cycle (SSC) potentiation of force, power, velocity, and acceleration occurs across the concentric phase of ballistic leg presses. Second, we examined the influence of late eccentric phase force and length of the amortization phase on potentiated concentric phase performance variables. Twenty-one male runners (age: 31.9 ± 4.7 years) performed SSC and concentric-only (CO) ballistic leg press throws. Potentiations of concentric actions were calculated as the difference between SSC and CO contractions. An analysis splitting the concentric range of motion (ROM) into 6 equal time intervals determined force and acceleration were potentiated (p < 0.05) only during the first one-sixth time interval of concentric motion, whereas velocity and power were potentiated (p < 0.05) at all time intervals over the entire concentric motion with the exception of power over the last one-sixth time interval. A more precise analysis examining 20-millisecond time intervals across the first 200 milliseconds of concentric motion determined force was potentiated only over the first 140 milliseconds and acceleration only over the first 160 milliseconds. Eccentric force measured during the last 100 milliseconds of eccentric motion was related to potentiated force during the initial 200 milliseconds of concentric motion (r = 0.44, p < 0.05) and potentiated mean power across the full concentric ROM (r = 0.62, p < 0.01). Results indicate that in contrast to power and velocity, potentiation of force and acceleration occurs only early during the concentric phase of SSC ballistic leg presses. Correlational findings imply late eccentric phase force is important for generating force and power during the concentric phase of the SSC and thus training focusing on enhancing late phase eccentric force appears important for developing explosive force and power during SSC movements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号