首页 | 本学科首页   官方微博 | 高级检索  
     


Genome Wide Identification,Phylogeny and Expression of Zinc Transporter Genes in Common Carp
Authors:Yanliang Jiang  Songhao Zhang  Shuaisheng Feng  Jinsheng Sun  Peng Xu
Affiliation:1. CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China.; 2. College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.; University of Florida, United States of America,
Abstract:

Background

Zinc is an essential trace element in organisms, which serves as a cofactor for hundreds of enzymes that are involved in many pivotal biological processes including growth, development, reproduction and immunity. Therefore, the homeostasis of zinc in the cell is fundamental. The zinc transporter gene family is a large gene family that encodes proteins which regulate the movement of zinc across cellular and intracellular membranes. However, studies on teleost zinc transporters are mainly limited to model species.

Methodology/Principal Findings

We identified a set of 37 zinc transporters in common carp genome, including 17 from SLC30 family (ZnT), and 20 from SLC39 family (ZIP). Phylogenetic and syntenic analysis revealed that most of the zinc transporters are highly conserved, though recent gene duplication and gene losses do exist. Through examining the copy number of zinc transporter genes across several vertebrate genomes, thirteen zinc transporters in common carp are found to have undergone the gene duplications, including SLC30A1, SLC30A2, SLC30A5, SLC30A7, SLC30A9, SLC30A10, SLC39A1, SLC39A3, SLC39A4, SLC39A5, SLC39A6, SLC39A7 and SLC39A9. The expression patterns of all zinc transporters were established in various tissues, including blood, brain, gill, heart, intestine, liver, muscle, skin, spleen and kidney, and showed that most of the zinc transporters were ubiquitously expressed, indicating the critical role of zinc transporters in common carp.

Conclusions

To some extent, examination of gene families with detailed phylogenetic or orthology analysis could verify the authenticity and accuracy of assembly and annotation of the recently published common carp whole genome sequences. The gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp zinc transporters provides an important genomic resource for future biochemical, toxicological and physiological studies of zinc in teleost.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号