首页 | 本学科首页   官方微博 | 高级检索  
     


The Drosophila epsin 1 is required for ubiquitin-dependent synaptic growth and function but not for synaptic vesicle recycling
Authors:Bao Hong  Reist Noreen E  Zhang Bing
Affiliation:Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
Abstract:
The ubiquitin-proteasome system plays an important role in synaptic development and function. However, many components of this system, and how they act to affect synapses, are still not well understood. In this study, we use the Drosophila neuromuscular junction to study the in vivo function of Liquid facets (Lqf), a homolog of mammalian epsin 1. Our data show that Lqf plays a novel role in synapse development and function. Contrary to prior models, Lqf is not required for clathrin-mediated endocytosis of synaptic vesicles. Lqf is required to maintain bouton size and shape and to sustain synapse growth by acting as a specific substrate of the deubiquitinating enzyme Fat facets. However, Lqf is not a substrate of the Highwire (Hiw) E3 ubiquitin ligase; neither is it required for synapse overgrowth in hiw mutants. Interestingly, Lqf converges on the Hiw pathway by negatively regulating transmitter release in the hiw mutant. These observations demonstrate that Lqf plays distinct roles in two ubiquitin pathways to regulate structural and functional plasticity of the synapse.
Keywords:neuromuscular junction  synapse development  synaptic plasticity  synaptic transmission  ubiquitin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号