首页 | 本学科首页   官方微博 | 高级检索  
     


Large-scale Top-down Proteomics of the Human Proteome: Membrane Proteins,Mitochondria, and Senescence
Authors:Adam D. Catherman  Kenneth R. Durbin  Dorothy R. Ahlf  Bryan P. Early  Ryan T. Fellers  John C. Tran  Paul M. Thomas  Neil L. Kelleher
Affiliation:From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
Abstract:Top-down proteomics is emerging as a viable method for the routine identification of hundreds to thousands of proteins. In this work we report the largest top-down study to date, with the identification of 1,220 proteins from the transformed human cell line H1299 at a false discovery rate of 1%. Multiple separation strategies were utilized, including the focused isolation of mitochondria, resulting in significantly improved proteome coverage relative to previous work. In all, 347 mitochondrial proteins were identified, including ∼50% of the mitochondrial proteome below 30 kDa and over 75% of the subunits constituting the large complexes of oxidative phosphorylation. Three hundred of the identified proteins were found to be integral membrane proteins containing between 1 and 12 transmembrane helices, requiring no specific enrichment or modified LC-MS parameters. Over 5,000 proteoforms were observed, many harboring post-translational modifications, including over a dozen proteins containing lipid anchors (some previously unknown) and many others with phosphorylation and methylation modifications. Comparison between untreated and senescent H1299 cells revealed several changes to the proteome, including the hyperphosphorylation of HMGA2. This work illustrates the burgeoning ability of top-down proteomics to characterize large numbers of intact proteoforms in a high-throughput fashion.Although traditional bottom-up approaches to mass-spectrometry-based proteomics are capable of identifying thousands of protein groups from a complex mixture, proteolytic digestion can result in the loss of information pertaining to post-translational modifications and sequence variants (1, 2). The recent implementation of top-down proteomics in a high-throughput format using either Fourier transform ion cyclotron resonance (35) or Orbitrap instruments (6, 7) has shown an increasing scale of applicability while preserving information on combinatorial modifications and highly related sequence variants. For example, the identification of over 500 bacterial proteins helped researchers find covalent switches on cysteines (7), and over 1,000 proteins were identified from human cells (3). Such advances have driven the detection of whole protein forms, now simply called proteoforms (8), with several laboratories now seeking to tie these to specific functions in cell and disease biology (911).The term “proteoform” denotes a specific primary structure of an intact protein molecule that arises from a specific gene and refers to a precise combination of genetic variation, splice variants, and post-translational modifications. Whereas special attention is required in order to accomplish gene- and variant-specific identifications via the bottom-up approach, top-down proteomics routinely links proteins to specific genes without the problem of protein inference. However, the fully automated characterization of whole proteoforms still represents a significant challenge in the field. Another major challenge is to extend the top-down approach to the study of whole integral membrane proteins, whose hydrophobicity can often limit their analysis via LC-MS (5, 1216). Though integral membrane proteins are often difficult to solubilize, the long stretches of sequence information provided from fragmentation of their transmembrane domains in the gas phase can actually aid in their identification (5, 13).In parallel to the early days of bottom-up proteomics a decade ago (1721), in this work we brought the latest methods for top-down proteomics into combination with subcellular fractionation and cellular treatments to expand coverage of the human proteome. We utilized multiple dimensions of separation and an Orbitrap Elite mass spectrometer to achieve large-scale interrogation of intact proteins derived from H1299 cells. For this focus issue on post-translational modifications, we report this summary of findings from the largest implementation of top-down proteomics to date, which resulted in the identification of 1,220 proteins and thousands more proteoforms. We also applied the platform to H1299 cells induced into senescence by treatment with the DNA-damaging agent camptothecin.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号