首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid
Authors:Rizwan Ahsan N  Krick Wolfgang  Burckhardt Gerhard
Institution:Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Georg-August-Universit?t G?ttingen, Humboldtallee 23, 37073 G?ttingen, Germany.
Abstract:Organic anion transporter 1 (OAT1) is key for the secretion of organic anions in renal proximal tubules. These organic anions comprise endogenous as well as exogenous compounds including frequently used drugs of various chemical structures. The molecular basis for the polyspecificity of OAT1 is not known. Here we mutated a conserved positively charged arginine residue (Arg(466)) in the 11(th) transmembrane helix of human OAT1. The replacement by the positively charged lysine (R466K) did not impair expression of hOAT1 at the plasma membrane of Xenopus laevis oocytes but decreased the transport of p-aminohippurate (PAH) considerably. Extracellular glutarate inhibited and intracellular glutarate trans-stimulated wild type and mutated OAT1, suggesting for the mutant R466K an unimpaired interaction with dicarboxylates. However, when Arg(466) was replaced by the negatively charged aspartate (R466D), glutarate no longer interacted with the mutant. PAH uptake by wild type hOAT1 was stimulated in the presence of chloride, whereas the R466K mutant was chloride-insensitive. Likewise, the uptake of labeled glutarate or ochratoxin A was chloride-dependent in the wild type but not in R466K. Kinetic experiments revealed that chloride did not alter the apparent K(m) for PAH but influenced V(max) in wild type OAT1-expressing oocytes. In R466K mutants the apparent K(m) for PAH was similar to that of the wild type, but V(max) was not changed by chloride removal. We conclude that Arg(466) influences the binding of glutarate, but not interaction with PAH, and interacts with chloride, which is a major determinant in substrate translocation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号