Modulation of Inositol 1,4,5-Trisphosphate Receptor Type 2 Channel Activity by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII)-mediated Phosphorylation |
| |
Authors: | Joshua T. Maxwell Sankar Natesan Gregory A. Mignery |
| |
Affiliation: | From the Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153 |
| |
Abstract: | InsP3-mediated calcium release through the type 2 inositol 1,4,5-trisphosphate receptor (InsP3R2) in cardiac myocytes results in the activation of associated CaMKII, thus enabling the kinase to act on downstream targets, such as histone deacetylases 4 and 5 (HDAC4 and HDAC5). The CaMKII activity also feedback modulates InsP3R2 function by direct phosphorylation and results in a dramatic decrease in the receptor-channel open probability (Po). We have identified S150 in the InsP3R2 core suppressor domain (amino acids 1–225) as the specific residue that is phosphorylated by CaMKII. Site-directed mutagenesis reveals that S150 is the CaMKII phosphorylation site responsible for modulation of channel activity. Nonphosphorylatable (S150A) and phosphomimetic (S150E) mutations were studied in planar lipid bilayers. The InsP3R2 S150A channel showed no decrease in activity when treated with CaMKII. Conversely, the phosphomimetic (S150E) channel displayed a very low Po under normal recording conditions in the absence of CaMKII (2 μm InsP3 and 250 nm [Ca2+]FREE) and mimicked a WT channel that has been phosphorylated by CaMKII. Phopho-specific antibodies demonstrate that InsP3R2 Ser-150 is phosphorylated in vivo by CaMKIIδ. The results of this study show that serine 150 of the InsP3R2 is phosphorylated by CaMKII and results in a decrease in the channel open probability. |
| |
Keywords: | Calcium Signaling CaMKII Inositol 1 4 5-Trisphosphate Phosphorylation Receptor Regulation |
|
|